
The Cancer Genome Atlas, Glioblastoma Data

Author: Sean Davis
Contact: sdavis2@mail.nih.gov
Date: 2011-08-13

Table of Contents

1 Background 1

2 The Data 2
2.1 Methylation data preparation . 7
2.2 CGH data preparation . 9
2.3 Expression data preparation . 11

3 Analyses 11
3.1 Expression and Methylation Correlation 11
3.2 CGH Data Analysis . 18

3.2.1 Quality control issues . 19
3.2.2 Data segmentation . 23
3.2.3 Centering the CGH data 28
3.2.4 Global Copy Number Behavior 30

3.3 Follow up on interesting finding 33

4 Conclusions 38

5 sessionInfo 39

1 Background

Approximately 85-90% of all primary central nervous system tumors arise in the
brain1. The annual incidence of all brain tumors is about 6-7 per 100,000 persons
per year with a mortality of about 5 per 100,000 persons per year. Glioblastoma
multiforme is the most common brain tumor in humans, accounting for about
15% of all brain tumors, and generally affects adults, though children may also
develop these tumors, also. The peak incidence is around 60 years of age.
The disease is, in general, devastating with a mean survival of less than one
year. Surgery and radiation are the primary therapeutic modalities though
chemotherapy may be used for diffuse disease such as leptomeningeal seeding or
positive CSF.

1See http://cancer.gov/ for details

1

mailto:sdavis2@mail.nih.gov
http://cancer.gov/

From the Cancer Genome Atlas website:

The Cancer Genome Atlas (TCGA) is a comprehensive and coordi-
nated effort to accelerate our understanding of the molecular basis of
cancer through the application of genome analysis technologies, in-
cluding large-scale genome sequencing. TCGA is a joint effort of the
National Cancer Institute (NCI) and the National Human Genome
Research Institute (NHGRI), two of the 27 Institutes and Centers
of the National Institutes of Health, U.S. Department of Health and
Human Services.

TCGA started as a pilot project in 2006 to assess and validate the
feasibility of a full-scale effort to systematically explore the entire
spectrum of genomic changes involved in human cancers. With the
success of the pilot project, TCGA now will expand its efforts to
aggressively pursue 20 or more additional cancers to yield a compre-
hensive, rigorous and publicly accessible data set that will improve
our ability to diagnose, treat and prevent cancer.

GBM is one of the tumors profiled in the pilot study. As such, there is quite
a bit of profiling data available. I have compiled a subset of these data for
experimentation.

Comment : Since this is the last lab of the course, please experiment, use the
help() function liberally to learn more about the objects, classes, and functions
being used. Also, if there are biological tangents to follow, please do so.

This vignette is designed to use the TCGAGBM data package. It should be
installed prior to getting started.

2 The Data

The data for this lab are publicly available from the TCGA data portal<http://tcga-
data.nci.nih.gov/tcga/>.

2

http://cancergenome.nih.gov/

Based on the availability of data for the 27k Illumina methylation platform,
data were downloaded from the TCGA website. The data are available in the
TCGAGBM data package in the extdata directory. The clinical data are avail-
able, also. Here is a quick overview:

> library(TCGAGBM)

> clini-

cal = read.delim(system.file("extdata/Clinical/clinical_patient_public_GBM.txt.gz",

+ package = "TCGAGBM"), header = TRUE)

> rownames(clinical) = clinical[, 1]

> summary(clinical)

bcr_patient_barcode additional_chemo_therapy

TCGA-02-0001: 1 NO :273

TCGA-02-0003: 1 null:157

TCGA-02-0004: 1 YES :165

3

TCGA-02-0006: 1

TCGA-02-0007: 1

TCGA-02-0009: 1

(Other) :589

additional_drug_therapy

NO :404

null:123

YES : 68

additional_hormone_therapy

NO : 1

null:594

additional_immuno_therapy

NO :460

null:124

YES : 11

additional_pharmaceutical_therapy

NO :448

null:122

YES : 25

additional_radiation_therapy

NO :424

null:120

YES : 51

age_at_initial_pathologic_diagnosis

null : 92

61 : 19

63 : 18

69 : 17

54 : 16

4

57 : 16

(Other):417

anatomic_organ_subdivision chemo_therapy

Brain:497 NO : 92

null : 98 null:139

YES :364

days_to_birth days_to_death

null : 92 null :202

-21920 : 2 111 : 4

-22456 : 2 372 : 4

-23205 : 2 121 : 3

-23273 : 2 142 : 3

-24085 : 2 231 : 3

(Other):493 (Other):376

days_to_initial_pathologic_diagnosis

0 :503

null: 92

days_to_last_followup days_to_tumor_progression

null : 92 null :366

103 : 4 91 : 4

167 : 4 0 : 3

316 : 4 125 : 3

358 : 4 148 : 3

106 : 3 167 : 3

(Other):484 (Other):213

days_to_tumor_recurrence drugs gender

null :494 null:595 FEMALE:193

427 : 3 MALE :310

93 : 3 null : 92

127 : 2

81 : 2

1013 : 1

(Other): 90

histological_type

null : 94

Treated primary GBM : 19

Untreated primary (De Nova) GBM: 1

Untreated primary (de novo) GBM:481

5

hormonal_therapy immuno_therapy

NO :412 NO :467

null:114 null:114

YES : 69 YES : 14

informed_consent_verified

null: 65

YES :530

initial_pathologic_diagnosis_method

EXCISIONAL BIOPSY : 60

FINE NEEDLE ASPIRATION BIOPSY : 3

INCISION BIOPSY : 4

null : 94

OTHER METHOD, SPECIFY IN NOTES: 2

TUMOR RESECTION :432

person_neoplasm_cancer_status

null :141

TUMOR FREE: 24

WITH TUMOR:430

pretreatment_history prior_glioma

NO :480 NO :487

null: 94 null: 93

YES : 21 YES : 15

radiation_therapy radiations

NO : 60 null:595

null:111

YES :424

targeted_molecular_therapy tumor_tissue_site

NO :407 BRAIN:502

6

null:118 null : 93

YES : 70

vital_status

DECEASED:393

LIVING :108

null : 94

year_of_initial_pathologic_diagnosis

null : 92

2009 : 67

2008 : 66

2005 : 53

2006 : 39

2007 : 37

(Other):241

2.1 Methylation data preparation

The methylation data were not in any standard Illumina data dump format, so
some custom code is necessary to convert to a MethyLumiSet object.

> tmp = sap-

ply(dir(system.file("extdata/TCGA_GBM_IlluminaMethylation27k",

+ package = "TCGAGBM"), pattern = "Methyla-

tion27.7"),

+ function(x) {

+ message(x)

+ read.delim(file.path(system.file("extdata/TCGA_GBM_IlluminaMethylation27k",

+ package = "TCGAGBM"), x),

+ header = TRUE, skip = 1)

+ }, simplify = FALSE)

> matrixnames = colnames(tmp[[1]])

> matrixlist = lapply(matrixnames, function(x) {

+ message(x)

+ sapply(tmp, function(y) y[, x])

+ })

> names(matrixlist) <- matrixnames

> b = ma-

trixlist$Methylated_Signal_Intensity..M./(matrixlist$Methylated_Signal_Intensity..M. +

+ matrixlist$Un.Methylated_Signal_Intensity..U. +

+ 100)

> methTCGA = new("MethyLumiSet", betas = b)

> for (x in names(matrixlist)) {

7

+ message(x)

+ assayDataElement(methTCGA, x) = matrixlist[[x]]

+ }

> featureNames(methTCGA) <- assayDataElement(methTCGA,

+ "Composite.Element.REF")[, 1]

> sampleNames(methTCGA) = substr(sub("jhu-

usc.edu_GBM.HumanMethylation27.7.lvl-1.",

+ "", sampleNames(methTCGA)), 1, 12)

> pData(methTCGA) = clinical[match(clinical[,

+ 1], sampleNames(methTCGA)),]

> annotation(methTCGA) = "IlluminaHumanMethylation27k"

> experimentData(methTCGA) = new("MIAME",

+ name = "TCGA GBM Methylation 27k data",

+ lab = "TCGA, JHU methylation", url = "http://cancergenome.nih.gov/")

Now, to look at what we have just loaded:

> methTCGA

Object Information:

MethyLumiSet (storageMode: lockedEnvironment)

assayData: 27578 features, 45 samples

element names: betas, Composite.Element.REF, Detec-

tion_P_Value, M_Number_Beads, M_STDERR, Methy-

lated_Signal_Intensity..M., Nega-

tive_Control_Grn_Avg_Intensity, Nega-

tive_Control_Grn_STDERR, Nega-

tive_Control_Red_Avg_Intensity, Nega-

tive_Control_Red_STDERR, U_Number_Beads, U_STDERR, Un.Methylated_Signal_Intensity..U.

protocolData: none

phenoData

sampleNames: TCGA-02-2466 TCGA-02-2470 ...

TCGA-32-1986 (45 total)

varLabels: BCRPATIENTBARCODE

TUMORTISSUESITE ... X (34 total)

varMetadata: labelDescription

featureData: none

experimentData: use ’experimentData(object)’

Annotation: IlluminaHumanMethylation27k

Major Operation History:

[1] submitted finished command

<0 rows> (or 0-length row.names)

> experimentData(methTCGA)

Experiment data

Experimenter name: TCGA GBM Methylation 27k data

Laboratory: TCGA, JHU methylation

Contact information:

Title:

URL: http://cancergenome.nih.gov/

PMIDs:

No abstract available.

8

2.2 CGH data preparation

Data from the same patients as above were downloaded from the TCGA website.
Briefly, the samples were run on 244k Agilent long oligo arrays with Promega
commercial DNA run as a reference. We can use the limma package to load and
manipulate the data.

> library(limma)

> tmp2 = read.maimages(files = dir(system.file("extdata/TCGA_GBM_244kcgh",

+ package = "TCGAGBM"), pattern = "MSK"),

+ path = system.file("extdata/TCGA_GBM_244kcgh",

+ package = "TCGAGBM"), source = "agilent")

A little convenience function, splitAgilentChromLocs is useful to get the
chromosome locations from the feature extraction data.

> splitAgilentChromLocs <- function(systematicName) {

+ tmp <- gsub("[:-

]", ":", as.character(systematicName))

+ tmp2 <- data.frame(do.call(rbind,

+ strsplit(as.character(tmp), ":")))

+ colnames(tmp2) <- c("chrom", "start",

+ "end")

+ tmp2[, 2] = as.integer(as.character(tmp2[,

+ 2]))

+ tmp2[, 3] = as.integer(as.character(tmp2[,

+ 3]))

+ return(tmp2)

+ }

> locs = splitAgilentChrom-

Locs(as.character(tmp2$genes$SystematicName))

> tmp2$genes = data.frame(tmp2$genes, locs)

Remove the control probes and “normalize”--that is, convert to MA from
RG.

> tmp2 = tmp2[tmp2$genes$ControlType ==

+ 0,]

> cghTCGAMA = normalizeWithinArrays(tmp2,

+ method = "none", bc.method = "none")

Now, map the sample names back to the arrays.

> cghs-

drf = read.delim(system.file("extdata/TCGA_GBM_244kcgh/mskcc.org_GBM.HG-

CGH-244A.1.sdrf.txt",

+ package = "TCGAGBM"))

> cghsdrf = cghsdrf[cghsdrf$Provider ==

+ "BCR",]

> cghTCGAMA$targets$sample = sub-

str(cghsdrf[match(rownames(cghTCGAMA$targets),

+ cghsdrf$Array.Data.File), 1], 1, 12)

> cghTCGAMA$targets = data.frame(cghTCGAMA$targets,

9

+ clinical[match(cghTCGAMA$targets$sample,

+ clinical[, 1]),])

And finally, just to make things easier in the future, order the probes in
chromosome order and remove probes mapping to odd places like chr7 random,
etc.

> numericchrom = sub("chr", "", cghTCGAMA$genes$chrom)

> numericchrom[numericchrom == "X"] = 23

> numericchrom[numericchrom == "Y"] = 24

> numericchrom = as.integer(numericchrom)

> cghTCGAMA = cghTCGAMA[!is.na(numericchrom),

+]

> numericchrom = numericchrom[!is.na(numericchrom)]

> cghTCGAMA$genes$chrom = fac-

tor(as.character(cghTCGAMA$genes$chrom))

> cghTCGAMA$genes$Chr = numericchrom

> cghTCGAMA$genes$Position = as.numeric(cghTCGAMA$genes$start)

> cghTCGAMA = cghTCGAMA[order(numericchrom,

+ cghTCGAMA$genes$start),]

Just to get a rough idea of how things look, let’s make a plot of one of the
samples:

> plot(cghTCGAMA$M[, 3], pch = ".", col = cghTCGAMA$genes$chrom)

10

2.3 Expression data preparation

Again, the data were downloaded from the TCGA website. A rather unusual
array platform was used for the gene expression analysis for which there was
actually no array description file available. The array is a custom Agilent 244k
array with multiple probes per gene. However, the TCGA project does make
available processed data for these samples. It appears that the processing was
pretty standard with the multiple probes per gene averaged and then loess
normalized. In any case, for our purposes, the data are probably good enough
for comparison to other data types.

> dat1 = read.delim(system.file("extdata/TCGA_GBM_geneexp/unc.edu__AgilentG4502A_07_2__gene_expression_analysis.txt",

+ package = "TCGAGBM"), header = TRUE)

> datmat = matrix(as.numeric(as.character(dat1$value)),

+ nrow = nrow(dat1)/length(unique(dat1$barcode)))

> colnames(datmat) = substr(unique(dat1$barcode),

+ 1, 12)

> row-

names(datmat) = dat1$gene.symbol[1:(nrow(dat1)/length(unique(dat1$barcode)))]

> expTCGA = new("ExpressionSet", exprs = datmat)

> experimentData(expTCGA) = new("MIAME",

+ name = "TCGA GBM level 3 expression data",

+ lab = "TCGA, UNC gene expression",

+ url = "http://cancergenome.nih.gov/")

> pData(expTCGA) = clinical[match(sampleNames(expTCGA),

+ clinical[, 1]),]

3 Analyses

Now that the data are loaded and organized, it is time to begin some analysis.
Note that I supply some suggested workflows, but there are plenty of tangents
that might be worth following.

3.1 Expression and Methylation Correlation

It is interesting, of course, to examine directly the effects of DNA methylation
on gene expression. Armed with our DNA methylation data and our gene ex-
pression data, we can directly calculate correlations between the two data types.
In order to perform the calculations, we will want to generate two matrices, one
for gene expression and one for DNA methylation. Each matrix will need to
have the same ordering of samples so that we can calculate on them directly.
Also, we will want to map the DNA methylation probes to their matching gene
expression probes. Recall that the gene expression data are in the form on an
ExpressionSet and that the featureNames of the ExpressionSet are the actual
HGNC gene names.

> data(expTCGA)

> featureNames(expTCGA)[10:20]

[1] "A4GNT" "AAAS" "AACS" "AADAC"

11

[5] "AADACL1" "AADACL2" "AADACL3" "AADACL4"

[9] "AADAT" "AAK1" "AAMP"

For the methylation data, on the other hand, the annotation for the probes
is not directly available from the MethyLumiSet object, methTCGA. Instead,
the featureNames are Illumina probe names.

> data(methTCGA)

> featureNames(methTCGA)[10:20]

[1] "cg00010193" "cg00011459" "cg00012199"

[4] "cg00012386" "cg00012792" "cg00013618"

[7] "cg00014085" "cg00014837" "cg00015770"

[10] "cg00016968" "cg00019495"

The appropriate data package is the IlluminaHumanMethylation27k.db pack-
age. It may be necessary to install it using biocLite if it is not already installed.
Attempting to load the package will show if it is installed.

> require(IlluminaHumanMethylation27k.db)

As with other annotation packages, we can quickly look to see what is inside:

> IlluminaHumanMethylation27k()

Quality control information for IlluminaHumanMethyla-

tion27k:

This package has the following mappings:

IlluminaHumanMethylation27kACCNUM has 27551 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kALIAS2PROBE has 57835 mapped keys (of 112379 keys)

IlluminaHumanMethylation27kCHR has 25821 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kCHRLENGTHS has 93 mapped keys (of 93 keys)

IlluminaHumanMethylation27kCHRLOC has 25805 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kCHRLOCEND has 25805 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kENSEMBL has 25746 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kENSEMBL2PROBE has 14519 mapped keys (of 19948 keys)

IlluminaHumanMethylation27kENTREZID has 25821 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kENZYME has 3649 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kENZYME2PROBE has 910 mapped keys (of 975 keys)

IlluminaHumanMethylation27kGENENAME has 25821 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kGO has 24351 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kGO2ALLPROBES has 14024 mapped keys (of 14407 keys)

IlluminaHumanMethylation27kGO2PROBE has 10569 mapped keys (of 10981 keys)

IlluminaHumanMethylation27kMAP has 25763 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kOMIM has 20148 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kPATH has 9063 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kPATH2PROBE has 229 mapped keys (of 229 keys)

IlluminaHumanMethylation27kPFAM has 25799 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kPMID has 25814 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kPMID2PROBE has 284707 mapped keys (of 302146 keys)

IlluminaHumanMethylation27kPROSITE has 25799 mapped keys (of 27578 keys)

12

IlluminaHumanMethylation27kREFSEQ has 25821 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kSYMBOL has 25821 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kUNIGENE has 25806 mapped keys (of 27578 keys)

IlluminaHumanMethylation27kUNIPROT has 25732 mapped keys (of 27578 keys)

Additional Information about this package:

DB schema: HUMANCHIP_DB

DB schema version: 2.1

Organism: Homo sapiens

Date for NCBI data: 2011-Mar16

Date for GO data: 20110312

Date for KEGG data: 2011-Mar15

Date for Golden Path data: 2010-Mar22

Date for IPI data: 2011-Feb18

Date for Ensembl data: 2011-Feb2

Since we want to map methylation and gene expression to each other, we
can use the annotation package to get gene names for the methylation data.

> methgenenames = unlist(mget(featureNames(methTCGA),

+ IlluminaHumanMethylation27kSYMBOL,

+ ifnotfound = NA))

> sum(is.na(methgenenames))

[1] 1757

There are 1611 probes on the methylation platform that, for whatever rea-
son, do not have associated gene symbols. We will simply exclude those from
downstream analysis. The mapping between platforms is now pretty straight-
forward.

> tmp = match(methgenenames, featureNames(expTCGA))

> methdat = betas(methTCGA)[!is.na(tmp),

+ order(sampleNames(methTCGA))]

> expdat = exprs(expTCGA)[tmp[!is.na(tmp)],

+ order(sampleNames(expTCGA))]

Here, we are relying on the fact that the sample names are the same between
the two data sets so that ordering by sampleNames will result in matching
orders. We can quickly double-check that that is the case.

> match(colnames(expdat), colnames(methdat))

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[31] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

> dim(expdat)

[1] 23565 45

> dim(methdat)

[1] 23565 45

The sample names appear to match and the matrices are the same size. Now,
we are ready to calculate some correlations. The statement below simply does

13

a row wise Pearson correlation calculation. The result will be one correlation
value per row of data, each of which corresponds to a methylation probe and
its associated expression probe. Note that each expression probe may map to
several methylation probes.

> x = sapply(1:nrow(methdat), function(i) cor(methdat[i,

+], expdat[i,]))

So, what would we expect this distribution to look like?

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu.

-0.92580 -0.20600 -0.05303 -0.05888 0.09231

Max. NA’s

0.83900 10.00000

The mean is less than 0 and there is a definite skew to the left. How big is
the effect? In order to determine what the distribution might look like under
the null hypothesis, we can simply permute one of the sample sets relative to
the other, effectively breaking any correlation that might exist.

> y = sapply(1:nrow(methdat), function(i) cor(methdat[i,

+], expdat[i, sample(1:45, 45)]))

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu.

-0.587100 -0.102200 0.001313 0.000238 0.102900

Max. NA’s

0.584200 10.000000

Though this is only one replicate of randomization, it is obvious that this
distribution looks more like what we would expect if there were no effect of DNA
methylation on gene expression. A quick plot is probably useful to examine the
differences more globally.

> plot(density(y[!is.na(y)]), col = "green",

+ main = "Pearson Correlation")

> lines(density(x[!is.na(x)]), col = "red")

> legend(0.3, 2, legend = c("expected",

+ "observed"), col = c("green", "red"),

+ lty = 1)

14

Note the shoulder to the left in the ’observed’ data, indicating an effect
of DNA methylation on gene expression. One could also do some hypothesis
testing to determine if the effect is statistically significant.

There appears to be a global effect of DNA methylation on gene expression.
Which genes show the largest effect?

> mincor = rownames(methdat)[which.min(x)]

> mget(mincor, IlluminaHumanMethylation27kSYMBOL)

$cg15933546

[1] "DNAH8"

And what does a plot of gene expression and DNA methylation look like for
that probe?

> plot(methdat[which.min(x),], expdat[which.min(x),

+])

15

So, there appears to be a bit of a problem with our correlation measure.
The Pearson correlation measure will find such outliers quite nicely. Instead,
perhaps we should use a rank-based correlation metric.

> x = sapply(1:nrow(methdat), function(i) cor(methdat[i,

+], expdat[i,], method = "spearman"))

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu.

-0.82600 -0.19980 -0.04592 -0.05115 0.09776

Max. NA’s

0.72650 10.00000

> y = sapply(1:nrow(methdat), function(i) cor(methdat[i,

+], expdat[i, sample(1:45, 45)], method = "spear-

man"))

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu.

-0.528100 -0.102700 -0.000725 -0.000403 0.102700

Max. NA’s

0.579700 10.000000

The same general trend seems to be present using the Spearman correlation
coefficient as with the Pearson correlation coefficient.

> plot(density(y[!is.na(y)]), col = "green",

+ main = "Spearman Correlation")

> lines(density(x[!is.na(x)]), col = "red")

> legend(0.3, 2, legend = c("expected",

+ "observed"), col = c("green", "red"),

16

+ lty = 1)

And the plot looks hearly identical. Did we do any better with finding
biologically meaningful top methylation candidates?

> plot(methdat[which.min(x),], expdat[which.min(x),

+])

17

That looks better. The shape of the plot is interesting. Except for five data
points, there appears to be a threshold effect whereby genes are more highly
expressed only when methylation is very low.

• Try writing a short function that will take as input an integer that repre-
sents the rank in correlation (lowest being the first), the correlation vector,
and the two data matrices and produce a plot of the data for that probe.

• Extend the function to include the gene name in the plot.

• Instead of returning the correlation coefficient like above, change the code
so that a p.value is returned. Hint: try experimenting with the cor.test
function.

Questions for thought:

• How would you go about determining if there is a regional bias in gene
expression and DNA methylation?

3.2 CGH Data Analysis

CGH data are unlike many other types of high-throughput data such as gene
expressin or DNA methylation. The fact that copy number in the genome is
piecewise continuous is used by copy number segmentation methods to take
measurements that are noisy at the individual probe level and smooth them in
a non-continuous way; that is, these methods try to respect natural changepoints
in the data. We will be using the DNAcopy package to facilitate some of these
analyses. Make sure that it is installed.

18

> require(DNAcopy, quiet = TRUE)

If this doesn’t work, go ahead and install using biocLite().

3.2.1 Quality control issues

I had already preprocessed the data above into a useful form. The data set is
in the form of a limma MAList. The snapCGH package takes that as an input.

> library(limma)

> require(DNAcopy)

> data(cghTCGAMA)

> class(cghTCGAMA)

[1] "MAList"

attr(,"package")

[1] "limma"

As you can see, the data just loaded are in the form of a limma MAList.
The M values in this MAList are not gene expression measures, but log2 ratios
of tumor DNA to a reference normal DNA. For normal individuals, the ratio
of sample to reference signal will be close to 1 for a log2 ratio of 0. Gain of a
copy of DNA at a locus will result in a value of log2(3/2) while loss of a copy
will show log2(1/2). The sex chromosomes will behave slightly differently; that
behavior will depend on the genders of both the reference and the sample.

The annotation for these data are in the $genes list element.

> head(cghTCGAMA$genes)

Row Col ProbeUID ControlType

8437 19 233 8589 0

25100 56 31 24444 0

61506 135 419 61188 0

48639 107 318 48398 0

69696 153 403 69245 0

107488 236 354 105927 0

ProbeName GeneName

8437 A_14_P112718 AK026901

25100 A_16_P15000916 AK026901

61506 A_16_P15001074 AK125248

48639 A_16_P00000012 chr1:000736483-000736542

69696 A_16_P00000014 chr1:000742533-000742586

107488 A_16_P00000017 chr1:000746956-000747005

SystematicName

8437 chr1:000554268-000554327

25100 chr1:000554287-000554346

61506 chr1:000639581-000639640

48639 chr1:000736483-000736542

69696 chr1:000742533-000742586

107488 chr1:000746956-000747005

Descrip-

tion

8437 Homo sapi-

ens cDNA: FLJ23248 fis, clone COL03555.

19

25100 Homo sapi-

ens cDNA: FLJ23248 fis, clone COL03555.

61506 Homo sapi-

ens cDNA FLJ43258 fis, clone HHDPC1000001.

48639 Un-

known

69696 Un-

known

107488 Un-

known

chrom start end Chr Position

8437 chr1 554268 554327 1 554268

25100 chr1 554287 554346 1 554287

61506 chr1 639581 639640 1 639581

48639 chr1 736483 736542 1 736483

69696 chr1 742533 742586 1 742533

107488 chr1 746956 747005 1 746956

The data should be sorted by chromosome and position already, so we can
plot a whole genome of log2 ratios easily with a single command. I add color to
distinguish the chromosomes.

> plot(cghTCGAMA$M[, 3], col = cghTCGAMA$genes$Chr,

+ pch = ".")

You can see that most of the values are, indeed, near 0 with some spread.
This spread represents the“noise” in the data and should probably be quantified.
Normally, the spread of such values can be estimated by a measure such as the

20

standard deviation. This will work just fine if the entire genome has a common
mean (no copy number variation). How do the standard deviations look across
our samples?

> log2sds = apply(cghTCGAMA$M, 2, sd)

> par(las = 2)

> barplot(log2sds, main = "Standard Devia-

tions of log2 Ratios",

+ xlab = "sample", names.arg = 1:ncol(cghTCGAMA))

When advising experimentalists of the quality of their CGH arrays, it is
important to be able to provide a robust estimate of the noise in the data.
To see if the standard deviation is a very robust estimator of the noise. Let’s
consider a hypothetical chromosome with 10000 probes on it and no copy number
variation. We can simulate such a thing quickly in R using rnorm and let’s use
a standard deviation of 0.4, similar to that in our data.

> fakechrom = rnorm(10000, sd = 0.4)

> sd(fakechrom)

[1] 0.3963893

Not very interesting, but let’s put a copy number change in the middle of
the chromosome that is similar in scale to that shown in the sample you plotted
above:

> fakechrom[4900:5000] = fakechrom[4900:5000] +

+ 4

> plot(fakechrom, pch = ".")

21

> sd(fakechrom)

[1] 0.5642358

Note that the standard deviation is now quite a bit larger than the 0.4 that
we had anticipated even though we modified only 100 datapoints out of a total
of 10,000. In other words, the standard deviation is sensitive to outliers in the
data and with cancer samples, there can be quite a few outliers as many cancers
have highly disordered and aneuploid genomes. With genomic data of any kind
that might be expected to behave in a piecewise constant fashion, one can use
another measure of noise, the derivative log ratio spread (DLRS). Defined here:

> dlrs <- function(x) {

+ nx <- length(x)

+ if (nx < 3) {

+ stop("Vector length>2 needed for computa-

tion")

+ }

+ tmp <- embed(x, 2)

+ diffs <- tmp[, 2] - tmp[, 1]

+ dlrs <- IQR(diffs, na.rm = TRUE)/(sqrt(2) *

+ 1.34)

+ return(dlrs)

+ }

What is the dlrs of our fake chromosome, even with the noise added?

> dlrs(fakechrom)

[1] 0.3995698

22

And of our samples?

> log2dlrs = apply(cghTCGAMA$M, 2, dlrs)

> barplot(log2dlrs, main = "DLRS", xlab = "sample",

+ names.arg = 1:length(log2dlrs))

The DLRS is a useful measure of the actual noise in the data and is largely
unaffected by “signal”. As such, it is a useful reporting tool for the technical
quality of an array. All of the arrays in our sample set have DLRS values < 0.3,
a maximum value recommended by Agilent.

We have applied the dlrs here to two-color Agilent CGH data, but such a
measure could also be applied to log2 ratios from SNP arrays or even to copy
number estimates generated by second-generation sequencing.

3.2.2 Data segmentation

A key component of making the best use of CGH data is called “segmentation”.
There is extensive literature and literally dozens of methods for performing
segmentation on CGH data. One that is particularly popular, easy to use, and
fairly robust with not much need for parameter tuning on this data set is Circular
Binary Segmentation (CBS) and is implemented in the DNAcopy package.

> require(DNAcopy)

> citation("DNAcopy")

To cite package ‘DNAcopy’ in publications

use:

Venkatraman E. Seshan and Adam Olshen ().

23

DNAcopy: DNA copy number data analysis. R

package version 1.27.1.

A BibTeX entry for LaTeX users is

@Manual{,

title = {DNAcopy: DNA copy number data analysis},

author = {Venkatraman E. Seshan and Adam Olshen},

note = {R package version 1.27.1},

}

ATTENTION: This citation information has

been auto-generated from the package

DESCRIPTION file and may need manual

editing, see ‘help("citation")’ .

The citation function can be used with any R package to get a suggested
reference or references. In some cases, the authors will list publications here,
also. With the DNAcopy package loaded, we need to convert our MAList into
a CNA object that the DNAcopy package understands. After doing so, we can
proceed with the segmentation process.

> cna = CNA(cghTCGAMA$M, chrom = cghTCGAMA$genes$Chr,

+ maploc = cghTCGAMA$genes$Position)

Warning messages are OK in the statements above. Error messages are not.
To keep the lab time to a minimum, I have already segmented the data and

saved the results, so there is no need to run the next command. Feel free to do
so if you like, but it will take about 5-10 minutes to complete.

> DNAcopyResult = segment(cna)

The interesting part of the DNAcopyResult object is the DNAcopyResult$output
data.frame. Take a look at the first few rows to get a sense of what is in that
data.frame:

> data(DNAcopyResult)

> class(DNAcopyResult)

[1] "DNAcopy"

> str(DNAcopyResult)

List of 4

$ data :Classes ‘CNA’ and ’data.frame’: 237834 obs. of 47 vari-

ables:

..$ chrom :Class ’AsIs’ int [1:237834] 1 1 1 1 1 1 1 1 1 1 ...

..$ maploc : int [1:237834] 554268 554287 639581 736483 742533 746956 757922 769590 784458 792413 ...

..$ Sample.1 : num [1:237834] -0.835 -0.119 -0.303 -

0.848 -0.86 ...

..$ Sample.2 : num [1:237834] -0.397 -0.279 -0.256 -

0.435 -0.511 ...

..$ Sample.3 : num [1:237834] -0.307 -0.412 -0.389 -

0.197 -0.408 ...

..$ Sample.4 : num [1:237834] -0.186 -0.295 -

0.33 0.361 0.284 ...

24

..$ Sample.5 : num [1:237834] -0.462755 -1.208144 -

0.074967 -0.000619 -0.204713 ...

..$ Sample.6 : num [1:237834] -0.00601 -

0.40103 0.03126 0.09049 0.02756 ...

..$ Sample.7 : num [1:237834] -0.677 -0.257 -0.303 -

0.44 -0.788 ...

..$ Sample.8 : num [1:237834] -0.4865 -0.309 -0.0106 -

0.1609 -0.7247 ...

..$ Sample.9 : num [1:237834] -0.46 -0.2652 0.0353 -

0.0376 -0.0319 ...

..$ Sample.10: num [1:237834] -0.3808 -0.1247 0.0954 -

0.3125 -0.6278 ...

..$ Sample.11: num [1:237834] -0.7593 -0.4938 -

0.2141 -0.0964 -0.4308 ...

..$ Sample.12: num [1:237834] -0.122 -0.295 -0.166 -

0.595 -0.438 ...

..$ Sample.13: num [1:237834] -0.337 -0.251 -0.202 -

0.28 -0.413 ...

..$ Sample.14: num [1:237834] -1.0474 -

0.9955 0.5392 0.1417 0.0108 ...

..$ Sample.15: num [1:237834] -

0.0695 0.2873 0.4508 0.1924 0.2408 ...

..$ Sample.16: num [1:237834] -0.2021 -0.3931 -

0.3783 -0.0726 -0.4625 ...

..$ Sample.17: num [1:237834] -0.04025 -

0.19164 0.35159 0.00462 -0.37364 ...

..$ Sample.18: num [1:237834] -0.0651 -0.0718 0.0966 -

0.0595 -0.3145 ...

..$ Sample.19: num [1:237834] -0.4576 -

1.4009 0.1637 0.1842 -0.0925 ...

..$ Sample.20: num [1:237834] -0.942 -1.675 0.139 -

0.287 -0.15 ...

..$ Sample.21: num [1:237834] -0.0886 -

0.038 0.2081 0.1817 0.4394 ...

..$ Sample.22: num [1:237834] -

0.0676 0.1388 0.3111 0.0152 0.0574 ...

..$ Sample.23: num [1:237834] -0.5645 -0.0665 0.0776 -

0.4033 -0.462 ...

..$ Sample.24: num [1:237834] -0.8593 -1.9658 0.0818 -

0.0369 0.0117 ...

..$ Sample.25: num [1:237834] -0.2496 -0.2859 -

0.022 0.0901 -0.2358 ...

..$ Sample.26: num [1:237834] -

0.16957 0.42437 0.48651 -0.00381 -0.35216 ...

..$ Sample.27: num [1:237834] -

0.0519 0.1894 0.3673 0.1334 -0.0929 ...

..$ Sample.28: num [1:237834] -0.21457 -

0.2359 0.23507 0.00635 -0.20374 ...

..$ Sample.29: num [1:237834] 0.0599 -

0.029 0.3558 0.1296 0.0698 ...

25

..$ Sample.30: num [1:237834] -0.2131 -0.1149 0.0755 -

0.4354 -0.3781 ...

..$ Sample.31: num [1:237834] 0.0649 -

0.4275 0.5949 0.1539 -0.1956 ...

..$ Sample.32: num [1:237834] -0.149 -

0.155 0.311 0.175 -0.317 ...

..$ Sample.33: num [1:237834] -0.363 -0.62 -

0.155 0.102 -0.571 ...

..$ Sample.34: num [1:237834] -0.39793 -0.75989 -

0.00638 -0.32363 -0.75243 ...

..$ Sample.35: num [1:237834] -0.678 -0.643 0.229 -

0.115 -0.169 ...

..$ Sample.36: num [1:237834] -0.479 -0.858 0.221 -

0.585 -0.602 ...

..$ Sample.37: num [1:237834] -0.4255 -

0.4983 0.4769 0.0751 -0.1221 ...

..$ Sample.38: num [1:237834] -1.147 -1.175 -0.903 -

0.274 -1.228 ...

..$ Sample.39: num [1:237834] 0.17 0.1706 0.169 -

0.0297 -0.0114 ...

..$ Sample.40: num [1:237834] -0.681 -0.845 -1.005 -

0.655 -0.893 ...

..$ Sample.41: num [1:237834] -0.5468 0.0712 -0.2086 -

0.416 -0.5412 ...

..$ Sample.42: num [1:237834] -0.56146 0.00593 -

0.0324 -0.30969 -0.57682 ...

..$ Sample.43: num [1:237834] -0.7518 -1.5594 0.5325 -

0.0239 -0.0884 ...

..$ Sample.44: num [1:237834] -0.47 -

0.3217 0.3012 0.1977 -0.0167 ...

..$ Sample.45: num [1:237834] -0.316 -

0.508 0.251 0.143 -0.358 ...

..- attr(*, "data.type")= chr "logratio"

$ output :’data.frame’: 7052 obs. of 6 variables:

..$ ID : chr [1:7052] "Sample.1" "Sam-

ple.1" "Sample.1" "Sample.1" ...

..$ chrom : int [1:7052] 1 1 1 1 1 2 2 2 3 4 ...

..$ loc.start: int [1:7052] 554268 202195769 203399457 246794522 246880850 20341 34556434 34608979 39066 41413 ...

..$ loc.end : int [1:7052] 202172219 203393803 246755225 246874992 247190718 34539740 34580533 242717016 199379566 173659100 ...

..$ num.mark : num [1:7052] 15576 127 3666 12 33 ...

..$ seg.mean : num [1:7052] -0.584 1.653 -0.605 -

1.217 -0.531 ...

$ segRows:’data.frame’: 7052 obs. of 2 variables:

..$ startRow: int [1:7052] 1 15577 15704 19370 19382 19415 22138 22140 38086 54092 ...

..$ endRow : int [1:7052] 15576 15703 19369 19381 19414 22137 22139 38085 54091 66299 ...

$ call : language segment(x = cna, verbose = 2)

- attr(*, "class")= chr "DNAcopy"

> head(DNAcopyResult$output)

ID chrom loc.start loc.end num.mark

1 Sample.1 1 554268 202172219 15576

26

2 Sample.1 1 202195769 203393803 127

3 Sample.1 1 203399457 246755225 3666

4 Sample.1 1 246794522 246874992 12

5 Sample.1 1 246880850 247190718 33

6 Sample.1 2 20341 34539740 2723

seg.mean

1 -0.5840

2 1.6526

3 -0.6045

4 -1.2169

5 -0.5308

6 -0.5947

Each row in this data.frame describes a segment of the genome that, sta-
tistically speaking, has a constant copy number. The ID and chrom columns
are self-explanatory. The loc.start, loc.end, num.mark, and seg.mean simply de-
scribe the chromosome location for the start and end of the copy-number-stable
region, the number of probes on the array that are represented in the region,
and the mean log2 ratio of that region. The data in this form are great for
loading into a database or for some visualization tools that require segmented
data. For the purposes of this lab, we might want things back in a matrix-like
form where the rows represent segmental mean for the each of the probes and
the columns represent samples. The following little code chunk will get us there:

> dnacPerSample = split(DNAcopyResult$output,

+ DNAcopyResult$output$ID)

> dnacPerSample = dnacPerSam-

ple[order(as.numeric(sub("Sample.",

+ "", names(dnacPerSample))))]

> dnacDataMat = do.call(cbind, lapply(dnacPerSample,

+ function(z) {

+ return(rep(z[, 6], z[, 5]))

+ }))

> dim(dnacDataMat)

[1] 237834 45

To keep the probe annotation information and the data together, we can use
the ExpressionSet class.

> require(Biobase)

> pdata = new("AnnotatedDataFrame", cghTCGAMA$targets)

> sampleNames(pdata) = cghTCGAMA$targets$sample

> colnames(dnacDataMat) = cghTCGAMA$targets$sample

> dnacEset = new("ExpressionSet", phenoData = pdata,

+ exprs = dnacDataMat, feature-

Data = new("AnnotatedDataFrame",

+ cghTCGAMA$genes))

At this point, you have successfully segmented (smoothed) your data and
created a not-so-aptly-named ExpressionSet.

27

3.2.3 Centering the CGH data

Remember that our goal is to find regions of gain and loss. To do so, we want
to make sure that the ”baseline“ for all the samples is near a log2 ratio of zero. I
include ”baseline“ in quotes because the baseline represents our estimate of the
”normal“ copy number state. An assumption that I and others will make is that
the best estimate of the ”normal“ state is that which minimizes the number of
probes that are not near the log2 ratio of 0. Perhaps a visual representation is
useful here. For this part of the exercise, we will be using DNAcopy segmented
values that we prepared earlier.

And plot one example where the center is probably not correct:

> plot(exprs(dnacEset)[, 1], pch = ".",

+ col = fData(dnacEset)$chrom)

Notice that the ”center“ of the distribution is at log2 ratio of -0.6. How can
we reliably and robustly find the ”center“ of this distribution? Let’s look at a
density plot of the segmented data.

> plot(density(exprs(dnacEset)[, 1]), xlim = c(-1.5,

+ 1.5))

28

The mode of this distribution is exactly what we are interested in using as
the ”center“. Therefore, I include a little function to find the mode of a vector
of numbers.

> findMode = function(z) {

+ tmpdens = density(z)

+ return(tmpdens$x[which.max(tmpdens$y)])

+ }

We can apply it to all samples simultaneously using the apply functionality
of R.

> ctrs = apply(exprs(dnacEset), 2, findMode)

> summary(ctrs)

Min. 1st Qu. Median Mean 3rd Qu.

-0.70930 -0.28200 -0.12780 -0.16060 -0.02138

Max.

0.16300

To ”fix“ the data (that is, subtract the offsets from the data to appropriately
”center“ them), we can use the sweep function to add the appropriate offset to
the data to get the ”baseline“ near the log2 of 0, our goal.

> exprs(dnacEset) = sweep(exprs(dnacEset),

+ 2, ctrs)

Now, if we plot the same sample as before, it should show a baseline close
to log2 of 0.

29

> plot(exprs(dnacEset)[, 1], pch = ".",

+ col = fData(dnacEset)$chrom)

> abline(h = 0, col = "grey")

Now, on to biology, finally!

3.2.4 Global Copy Number Behavior

Now that we have performed segmentation, thereby smoothing the data while
maintaining the natural breakpoints in the data, we want to look for the regions
with the highest proportion of copy number changes in the samples. Particularly
if we successfully remove common copy number variants that are present in
normal individuals, such regions may be thought to be the most interesting
biologically.

There are a number of methods described in the literature to find such
”interesting” regions. However, we will keep it simple here and try just a couple.
Using our segmented and centered data, let’s simply add up the log2 ratios at
each locus for every sample.

> log2sums = rowSums(exprs(dnacEset))

> length(log2sums)

[1] 237834

And plot the result.

> plot(log2sums, pch = ".", col = fData(dnacEset)$chrom)

30

This figure is very important to understand. The distance away from the
y=0 line, here simply the sum of the segmented log2 ratios, is somewhat a mea-
sure of biological importance. Recall that regions that are gained may contain
oncogenes while regions with loss are potentially harboring tumor suppressors.
A few regions of interest immediately pop out. There are small, high excursions
on chromosomes 7 and 12. There is a significant low excursion on chromosome
9 (and also chromosome Y, which we will choose to ignore, but why would chro-
mosome Y appear to be deleted?). Also, though lower excursion, the baseline
for chromosome 7 shows a gain while the baseline for chromosome 10 shows a
loss. Does this make sense biologically given what is known about glioblastoma?

This is all well-and-good, but what genes are in the regions of high gain and
loss? Well, let’s just ask the data. Let’s find the probes that correspond to the
regions of highest gain and lowest loss. To do so, I will use a simple threshold
and pull out the probes that have log2sums higher than the threshold. In these
data, the thresholds are quite easy to choose; this is not, in general, the case.

> highcopyprobeIdx = log2sums > 20

> highcopyprobes = fData(dnacEset)[highcopyprobeIdx,

+ c("chrom", "GeneName")]

> highcopygenes = unique(highcopyprobes[-grep("chr",

+ highcopyprobes$GeneName),])

> highcopygenes[, c("chrom", "GeneName")]

chrom GeneName

210431 chr7 FLJ45974

65369 chr7 VSTM2

174544 chr7 CR613464

140801 chr7 BC045679

31

241146 chr7 SEC61G

165548 chr7 EGFR

44942 chr7 K03193

91766 chr7 LANCL2

93272 chr7 AK128355

121710 chr7 ECOP

125336 chr7 BC015339

192911 chr7 FLJ44060

209927 chr7 BC094796

130609 chr7 ZNF713

135653 chr7 CR590495

155510 chr7 MRPS17

156592 chr7 GBAS

29164 chr7 PSPH

210171 chr7 CCT6A

225314 chr7 SUMF2

119849 chr7 PHKG1

1910 chr7 Y10275

190999 chr7 CHCHD2

128900 chr7 AL713776

37842 chr7 BC035176

193160 chr12 OS9

43012 chr12 CENTG1

205540 chr12 TSPAN31

72692 chr12 CDK4

3017 chr12 MARCH9

67423 chr12 AK093897

85074 chr12 CYP27B1

195380 chr12 METTL1

155592 chr12 FAM119B

158880 chr12 TSFM

135524 chr12 AVIL

For those not in the cancer field, I point out two important cancer genes.
The high copy number region on chromosome 7 is harboring an EGFR ampli-
fication. Just check the literature for EGFR amplification in glioblastoma! On
chromosome 12, CDK4 is in the amplified region and is an important cell cycle
regulator.

What about the region of loss?

> lowcopyprobeIdx = log2sums < (-30)

> lowcopyprobes = fData(dnacEset)[lowcopyprobeIdx,

+ c("chrom", "GeneName")]

> lowcopygenes = unique(lowcopyprobes[-grep("chr",

+ lowcopyprobes$GeneName),])

> lowcopygenes[, c("chrom", "GeneName")]

chrom GeneName

81796 chr9 MTAP

107171 chr9 AF109294

166419 chr9 CDKN2A

41673 chr9 CDKN2B

32

10694 chrY RBMY1F

Again, for non-cancer folks, CDKN2A is a well-known tumor suppressor!

3.3 Follow up on interesting finding

So, we have three important cancer genes popping up by basic visual inspection!
But, one might begin to wonder a bit about the relationship between these genes.
In fact, since there were only three genes that were viable candidates and EGFR
was a well-known finding in glioblastoma, I decided to dig a bit further with
CDK4 and CDKN2A.

I’ll leave it as an exercise to the reader to learn extensively about these
two genes and their interactions, but suffice it to say that the full gene name
of CDKN2A is “cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits
CDK4)”. CDK4 drives the cell cycle, roughly, and CDKN2A serves to nega-
tively regulate that effect. CDK4 is the prototypic oncogene and CDKN2A is
the prototypic tumor suppressor, suppressing tumors by negatively regulating
CDK4.

Back to the data, we want to look at the relationship between copy number
estimates of CDKN2A and CDK4. I will choose representative probes for each
gene and look at a plot of them together.

> cdk4probeidx = which(fData(dnacEset)$GeneName ==

+ "CDK4")[1]

> cdkn2aprobeidx = which(fData(dnacEset)$GeneName ==

+ "CDKN2A")[1]

> plot(exprs(dnacEset)[cdk4probeidx,],

+ exprs(dnacEset)[cdkn2aprobeidx,],

+ xlab = "CDK4 log2 ratio", ylab = "CDKN2A log2 ratio")

33

How would you interpret the plot? Does this make sense given what you
know about CDKN2A and CDK4 biology?

Perhaps we want to look at the effect of copy number on gene expression for
these genes. To do so, we need the copy number data to be in the same order
as the gene expression data.

> cnCDK4 = exprs(dnacEset)[cdk4probeidx,

+ order(sampleNames(dnacEset))]

> cnCDKN2A = exprs(dnacEset)[cdkn2aprobeidx,

+ order(sampleNames(dnacEset))]

> exCDK4 = exprs(expTCGA)["CDK4", or-

der(sampleNames(expTCGA))]

> exCDKN2A = exprs(expTCGA)["CDKN2A", order(sampleNames(expTCGA))]

And now, we can make a plot of the two genes to see how things look:

> par(mfrow = c(2, 1))

> plot(cnCDK4, exCDK4, main = "CDK4", xlab = "Copy Num-

ber",

+ ylab = "Gene Expression")

> plot(cnCDKN2A, exCDKN2A, main = "CDKN2A",

+ xlab = "Copy Number", ylab = "Gene Expression")

34

And how about methylation, particularly of CDKN2A, since that could be a
secondary mechanism for silencing the gene, besides gene deletion? We’ll need
to get at least one methylation data vector or CDKN2A.

> methGeneNames = unlist(mget(featureNames(methTCGA),

+ IlluminaHumanMethylation27kSYMBOL,

+ ifnotfound = NA))

> cdkn2amethidx = which(methGeneNames ==

+ "CDKN2A")

> cor(t(betas(methTCGA)[cdkn2amethidx,]))

cg00718440 cg03079681 cg13479669

cg00718440 1.0000000 -0.1392268 -0.1244518

cg03079681 -0.1392268 1.0000000 0.7301408

cg13479669 -0.1244518 0.7301408 1.0000000

cg26673943 -0.1494681 0.8510897 0.7594127

cg26673943

cg00718440 -0.1494681

cg03079681 0.8510897

cg13479669 0.7594127

cg26673943 1.0000000

Note that three out of four probes are correlated positively with each other.
So, we can exclude the first probe because it does not agree with the other three.
This might be an incorrect assumption, but we can always check later. Using
the last probe, arbitrarily, as representative, we can now interrogate the effect
of methylation on gene expression of CDKN2A.

> methCDKN2A = betas(methTCGA)["cg26673943",

35

+ order(sampleNames(methTCGA))]

Finally, let’s plot against gene expression and copy number:

> par(mfrow = c(2, 1))

> plot(methCDKN2A, exCDKN2A, main = "Expres-

sion vs. Methylation",

+ sub = "CDKN2A, last probe")

> plot(methCDKN2A, cnCDKN2A, main = "Copy Num-

ber vs. Methylation",

+ sub = "CDKN2A, last probe")

Taking the expression plot, first, we see a very nice negative correlation
between expression and methylation, despite the fact that the maximal observed
methylation is 0.3 or so. Looking at the bottom plot, however, it appears that
the same correlation holds with copy number. We might hope to see that the
normal copy number samples would be more likely to have higher methylation
values. Instead, the opposite is true. Remember that we chose to ignore the
first methylation probe because it was poorly correlated with the other three
methylation probes. Let’s revisit that probe.

> methCDKN2A = betas(methTCGA)["cg00718440",

+ order(sampleNames(methTCGA))]

> par(mfrow = c(2, 1))

> plot(methCDKN2A, exCDKN2A, main = "Expres-

sion vs. Methylation",

+ sub = "CDKN2A, First probe")

> plot(methCDKN2A, cnCDKN2A, main = "Copy Num-

ber vs. Methylation",

36

+ sub = "CDKN2A, First probe")

While the number of samples with high methylation is small (probably just
2), these samples show lowish CDKN2A gene expression levels. With regard
to copy number, the samples with high methylation are, indeed, those without
deletion, suggesting that methylation could be responsible for CDKN2A silenc-
ing in these samples. And what about the CDK4 amplification status of these
samples?

> plot(cnCDK4, methCDKN2A)

37

These two samples have stone-cold normal CDK4 copy number.

4 Conclusions

We have performed a subset of a data integration exercise on TCGA glioblas-
toma data and have an incredibly interesting finding within the space of an
afternoon. There is a small but measurable global effect of methylation on gene
expression. Also, we find in the copy number data the most common amplifica-
tion, EGFR, as well as gain of chromosome 7 and loss of chromosome 10, also
common findings in glioblastoma.

At a more mechanistic level, it seems that the relationship between CDKN2A,
acting as tumor suppressor and it’s target, CDK4 is quite clear in these data.
We have a working hypothesis that CDK4 overexpression due to amplification
or CDKN2A underexpression due to either DNA loss (deletion) or methylation
at one CpG site are approximately mutually exclusive and likely represent the
same pathway being disregulated in these data.

The TCGA project provides a nice testbed for these types of data integra-
tion exercies. MicroRNA and sequence variation data are also available for these
samples, making the potential for finding even more interesting biology--even
with just a little work--an attractive proposition. Note that I have not tried
to be very sophisticated in these analyses and I do not claim that the analy-
sis here is anything more than a data exploration exercise. Obviously, more
sophisticated techniques including dimensionality reduction, network creation,
and formal data integration techniques would likely enhance the value of the
dataset significantly.

38

5 sessionInfo

> sessionInfo()

R Under development (unstable) (2011-08-01 r56587)

Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:

[1] en_US.utf-8/en_US.utf-8/en_US.utf-8/C/en_US.utf-

8/en_US.utf-8

attached base packages:

[1] stats graphics grDevices utils

[5] datasets methods base

other attached packages:

[1] TCGAGBM_1.1

[2] DNAcopy_1.27.1

[3] IlluminaHumanMethylation27k.db_1.4.6

[4] org.Hs.eg.db_2.5.0

[5] RSQLite_0.9-4

[6] DBI_0.2-5

[7] AnnotationDbi_1.15.9

[8] limma_3.9.11

[9] methylumi_1.9.0

[10] Biobase_2.13.7

[11] ascii_1.4

[12] proto_0.3-9.2

loaded via a namespace (and not attached):

[1] annotate_1.31.0 grid_2.14.0

[3] lattice_0.19-31 tools_2.14.0

[5] xtable_1.5-6

39

	Table of Contents
	1 Background
	2 The Data
	2.1 Methylation data preparation
	2.2 CGH data preparation
	2.3 Expression data preparation

	3 Analyses
	3.1 Expression and Methylation Correlation
	3.2 CGH Data Analysis
	3.2.1 Quality control issues
	3.2.2 Data segmentation
	3.2.3 Centering the CGH data
	3.2.4 Global Copy Number Behavior

	3.3 Follow up on interesting finding

	4 Conclusions
	5 sessionInfo

